
 
 

EDITORIALS 

The statistics are given for each problem.  Note there were 55 teams taking part in the 

contest. 

3 Point Problems 

3 point problems are designed so that there are no difficult algorithms required, and 

the solution should be quite straightforward. 

A Jelly Beans 

Remember the correct answer.   

For each guess there is a number and a name. How close is the guess (lower or higher 

does not matter)?  Remember the nearest guess and name.  Ignore if equal to closest. 

There were 102 submissions for this problem with 33 correct answers. 

B Bridge 

Read through the cards, ignoring any but A, K, Q and J.  For those, store the points 

against the appropriate player.  The most common source of error was not picking that 

the first card went to the player to the left of the dealer. 

There were 72 submissions for this problem with 29 correct answers. 

C Graffiti 

If the graffiti string is a palindrome, the graffiti will be genuine as long as there are only 

1 or 2 of the first character (the one in the middle). 

There were 130 submissions for this problem with only 15 correct answers. This 

proved to be the most tricky of the 3 point problems. 

D Tossing 

There are only 4 possible answers here! If the 2 coins show the same, blue and black 

(for 1) green and brown (for 2).  If the coins are different, use the other colours. 

There were 43 submissions for this problem with 38 correct answers, the most correct 

answers for the 3 point problems. 

  



 
 

10 Point Problems 

10 point problems are designed so that there are no difficult algorithms required, and 

the solution should not be very complicated. 

E Children 

A list of codes whose numerical values had to be assigned to the appropriate children.  

Once done, the 3 in the list with the highest values were to be selected. You were told 

there could not be ties. 

There were 80 submissions for this problem with 48 correct answers, the most correct 

answers for the 10 point problems. 

F Battleships 

This required a grid, so a 2D array was probably easiest.  Allocate the fleet to the 

appropriate grid square then evaluate the shots.  The only complication was having to 

say which direction the hit vessel was facing. 

There were 91 submissions for this problem with 15 correct answers. This proved to 

be the trickiest of the 10 point problems. 

G Factors 

A bit more complicated, but you are told what to do – find the pairs of factors of the 

last number, see which pair adds to give the middle number.  Eliminate negative 

factors appropriately. 

There were 94 submissions for this problem with 32 correct answers. 

H Pointless 

For each round, you have to remember that the first half of the scores are given from 

right to left on the podium, the last half from left to right.  As long as you remembered 

that, getting the correct scores for each pair should have been straightforward.  Once 

a pair has been eliminated in round 1, remember to discount them for round 2. 

The only other thing to remember is to add to the jackpot for a score of 0. 

There were 82 submissions for this problem with 26 correct answers. 

  



 
 

30 Point Problems 

PROBLEM I: EXTREME TTT (NZPC 2010) 

The basic idea is to iterate over all the possible lines and check if the three cells in 

each line contain the same symbol. 

There are several ways to enumerate all the possible lines. One approach is to 

observe that in each of the N dimensions, there are 5 possibilities for the values of 

the coordinates of three cells that form a line:  - increasing (1-2-3) 

- decreasing (3-2-1) 

- the same (1-1-1, 2-2-2, or 3-3-3) 

For example, the cells in the top row of a 2-dimensional grid are cell[1,1], cell[1,2], and 

cell[1,3]. In the first dimension the coordinates are the same (1-1-1) and in the second 

dimension the coordinates are increasing (1-2-3). 

So there are 5N possible lines to consider, which is tractable for N ≤ 7. 

There is one exception, which is that if the coordinates of the three cells are the same 

in all N dimensions, then the three cells are in fact the same and don't form a real line. 

This approach also double-counts the lines, because each line is considered in both 

directions; but that is easily fixed by halving the scores. 

Representing the board as an N-dimensional array is likely to be awkward because 

N varies. One alternative representation is a map (dictionary) where the keys are cell 

coordinates as arrays of length N and the values are the symbols. 

Another possible representation is a flat array. This works best with 0-based 

coordinates and indexing. For example in three dimensions, cell[a,b,c] corresponds to 

index 9*a + 3*b + c. More generally, coordinates can be converted to indexes using a 

for-loop that multiplies the coordinates by decreasing powers of 3 and adds them 

together. 

PROBLEM J: STANDING PINS (NZPC 2011) 

There are several cases where we can be certain in which cell a pin must stand: 

1. If one end of a laid-down pin is outside the grid, then the pin must stand on its 

other end. 

2. If one end of a laid-down pin is in a cell that contains a standing pin, then the 

laid-down pin must stand on its other end. 

3. If a cell that does not contain a standing pin contains the end of only one laid-

down pin, then that pin must stand in the cell. 

These rules can be applied repeatedly to stand some of the pins in their correct cells. 

When the rules can no longer be applied, it implies the following negations of their 

conditions hold: 



 
 

1. All the laid-down pins have both ends inside the grid. 

2. All the laid-down pins have both ends in cells that do not contain a standing pin. 

3. Each cell that does not contain a standing pin ("free cell") contains at least two 

pin ends. 

It can be shown that each such "free cell" must contain precisely two pin ends. Proof: 

Construct a graph where the nodes are the free cells and the edges are the laid-

down pins. The number of nodes is equal to the number of edges because there 

must be a one-to-one correspondence between the free cells and laid-down pins. 

The degree sum formula states that the sum of the degrees of the nodes is equal 

to twice the number of edges (which is equal to twice the number of nodes here). 

The degrees of the nodes are all at least 2, from the third condition above. 

If any of the degrees was greater than 2, then the sum of the degrees would be greater 
than twice the number of nodes, contradicting the degree sum formula. So the degrees 
must all be precisely 2. 

This means that the laid-down pins must form cycles. Choosing where one pin stands 

will determine where all the other pins in the cycle stand. 

If all the pins in the cycle have the same length, the choice doesn't make a difference 

to the solution. 

But if some of the pins in the cycle have different lengths, then the choice will result in 

distinct solutions so the solution is not unique. 

PROBLEM K: DICTIONARY ATTACK (NZPC 2013) 

This problem requires an exhaustive search, with some pruning to run within the time 

limit. 

The simplest approach is to start from the first letter of the encrypted message and try 

all the possible decryptions of that letter, then for each option recursively try all the 

possible decryptions of the remaining letters. 

When encountering a letter that has already been decrypted because it occurred 

earlier in the message, the same decryption must be used. 

Otherwise, the possible decryptions are all the letters that haven't been used as 

decryptions in the current attempt. 

When a full word has been decrypted, we can check that the result is in the dictionary; 

if not then the decryption is invalid. 

This approach by itself is too slow. To run within the time limit, one approach for 

pruning the search is to also check the partially decrypted prefix of the current word; 

if it's not a prefix of any dictionary word, then the decryption is invalid. 



 
 

It is possible to efficiently check if a string is a prefix of any dictionary word by building 

a set with all the prefixes. 

PROBLEM L: FROGS (NZPC 2015) 

This problem can be solved using dynamic programming or as a shortest path 

problem. 

The dynamic programming approach is to define DP[i][k] to be the length of the 

shortest hop in the best path from the start (lily pad 0) to lily pad i using k hops. 

The recurrence relation is 

DP[i][k] = max{ min(DP[j][k − 1], dist(j, i)) for j = 0..P−1 where dist(j, i) ≤ D } 

Here dist(j, i) is the distance between lily pads j and i, and min(DP[j][k − 1], dist(j, i)) gives 

the length of the shortest hop in the path from the start to lily pad i using k hops where 

the second-tolast lily pad is j. 

The base cases are DP[0][0] = +∞ and DP[i][0] = −∞ for i ≠ 0. 

Setting DP[0][0] to +∞ marks the empty path to lily pad 0 as valid; the value +∞ will be 

absorbed in the shortest hop length calculation, since min(+∞, dist(0, i)) = dist(0, i). 

Setting DP[i][0] to −∞ for i ≠ 0 marks those paths as invalid, since −∞ is worse than any 

possible shortest hop length. 

−∞ should also be used as the maximum of the empty set in the calculation of DP[i][k] 

using the recurrence relation if there are no values of j such that dist(j, i) ≤ D. 

The minimum number of hops to the end (lily pad 1) is the smallest k such that DP[1][k] 

≠ −∞, and the length of the shortest hop in that path is DP[1][k]. 

Another approach is to use a breadth-first search (BFS) to find the path with the 

minimum number of hops. Nodes correspond to lily pads, and two nodes are adjacent 

if the distance between their lily pads is at most D. 

To determine the best possible shortest hop length, the BFS can be modified to also 

record the shortest hop on the path to each node. If the BFS finds multiple paths with 

the minimum number of hops to some node, then the best of the shortest hop lengths 

should be recorded. 

Statistics 

 I J K L 

Solved 22 6 8 8 

Attempts 85 23 13 21 

  



 
 

 

 

100 Point Problems 

PROBLEM M: STARS (NZPC 2009) 

Knowing which stars correspond to two points of a constellation is enough to 

determine the location, rotation, and scale of the occurrence. 

Specifically, the distance between the two stars gives the scale (relative to the distance 

between the two corresponding points in the constellation); the bearing from the first 

star to the second star gives the rotation (relative to the bearing of the corresponding 

points); and the position of either star gives the location of the occurrence. 

The location, rotation and scale of the occurrence can be used to compute the required 

positions for the remaining stars in the occurrence. If stars exist at those positions, 

then the occurrence is valid. 

So for each constellation, one can iterate over all pairs of stars and check if an 

occurrence of the constellation exists at the location, rotation, and scale determined 

by having them as the first two stars of the constellation. 

To efficiently determine if a star exists at a position, the stars can be stored in a 

hashtable with their coordinates as the key. 

One approach for applying the transformation (translation, rotation, and scaling) is to 

use trigonometry and floating-point arithmetic. This works, but requires floating-point 

precision errors to be accounted for. 

Another approach is to use vector algebra, which can be done without any floating-

point arithmetic: 

Let c1 and c2 be the positions of the first two points of the constellation and let s1 and 

s2 be the positions of the corresponding stars. 

Define two coordinate systems, the constellation coordinate system and the star 

coordinate system. 

The constellation coordinate system has its origin (Oc) at c1, the first base vector (Ac) 

is c2 − c1, and the second base vector (Bc) is Ac rotated 90° anticlockwise (the vector 

(x, y) rotated 90° anticlockwise is (-y, x)). 

Similarly, the star coordinate system has its origin (Os) at s1, the first base vector (As) 

is s2 − s1, and the second base vector (Bs) is As rotated 90° anticlockwise. 

A constellation point can be transformed into a star position by resolving it into 

components in the constellation coordinate system, then applying those components 

in the star coordinate system. 



 
 

Specifically, let c be the position of a constellation point. 

We can find two real numbers a and b such that c = Oc + a Ac + b Bc . 

Then the position of the corresponding star is s = Os + a As + b Bs . 

The numbers a and b can be computed by projecting c − Oc onto Ac and onto Bc. 

To be precise, a must be ((c − Oc) · Ac) / |Ac|2 and b must be ((c − Oc) · Bc) / |Bc|2 , where 

|…| denotes the magnitude of a vector and · denotes the vector dot product. 

To verify that this is the case, observe that the component of a Ac in the direction 

of Ac is a |Ac| , and that 

a |Ac| = (((c − Oc) · Ac) / |Ac|2) |Ac| = ((c − Oc) · Ac) / |Ac| 

The dot product rule states that v · w = |v| |w| cos(θ) , where v and w are vectors and 

θ is the angle between them. 

Setting v = c − Oc and w = Ac gives ((c − Oc) · Ac) / |Ac| = |c − Oc| cos(θ) , which is the 

component of c − Oc in the direction of Ac as required. 

Substituting a and b into the formula for s gives the required position of the star. 

Calculating the magnitude of a vector normally requires taking a square root, but the 

expressions for a and b use the magnitude squared which is an integer. 

As written, floating-point arithmetic is still required for the division, but with a little 

algebraic manipulation the expressions for the X and Y components of s can be 

rewritten as rational expressions, with a single division as the very final operation. 

That final division operation can then be done using integer arithmetic; if there is a 

non-zero remainder then the required star position is not at integer coordinates and 

the occurrence should be ruled out. 

The time complexity of finding all the occurrences of one constellation is O(N2S). The 

problem statement does not specify the bound on S, but in the judge data it is at most 

20 so this complexity is acceptable. 

All that remains is to compute the brightness of each occurrence and remove duplicate 

occurrences. 

PROBLEM N: CONGESTED NETWORKS (NZPC 2010) 

The congestion level between two nodes is equal to the maximum flow where each 

edge has capacity 1. 

The maximum flow between a pair of nodes can be computed in O(n3) using the Ford-

Fulkerson algorithm. 



 
 

The bound on n is small enough that it is possible to run the maximum flow algorithm 

O(n2) times on all pairs of nodes, for an overall time complexity of O(n5). 

A simple optimisation is to skip pairs of nodes if either of their degrees is less than or 

equal to the greatest flow found so far (because the flow between the pair could not 

possibly be greater). This optimisation was not required to run within the time limit. 

PROBLEM O: JURY COMPROMISE (NZPC 2009) 

First, consider the problem of finding a subset J with m elements that minimises |D(J) 

− P(J)|, without regard to the tie-breaking rules. 

Minimising |D(J) − P(J)| is equivalent to making the signed value D(J) − P(J) as close to 

zero as possible. 

Let u be the maximum possible value of D(J) − P(J), which is 20m. 

Construct a table DP[0..n][0..m][−u..u] where DP[n'][m'][b] is true if there exists a 

subset J' of {1, ..., n'} with m' elements such that D(J') − P(J') = b. 

The base case is DP[0][0][0] = true (corresponding to the empty set). The rest of the 

table can be computed using the following recurrence: 

DP[n'][m'][b] = true if DP[n' − 1][m'][b] is true or DP[n' − 1][m' − 1][b − (dn' − pn')] is true 

The two cases correspond to excluding or including person n' in the subset. 

The minimum possible value for |D(J) − P(J)| is the smallest non-negative integer b for 

which DP[n][m][b] is true or DP[n][m][−b] is true. 

The output specification asks for the candidates in J to be displayed. To recover the 

candidates in the subset corresponding to DP[n][m][b], the table can be augmented to 

also record whether or not person n' was included when obtaining DP[n'][m'][b]. This 

is enough information to recover the full list of candidates in the subset using 

backtracking. 

Now consider the tie-breaking rules, which are to maximise D(J) + P(J) and if there are 

still ties to choose the jury that comes first in 'pseudo alphabetic' ordering. 

When computing DP[n'][m'][b], if it is possible both including and excluding person n', 

then the choice that maximises D(J') + P(J') should be used to ensure the overall value 

of D(J) + P(J) is maximised (the sum D(J') + P(J') can be cached in the augmented table 

for efficiency). 

If there are still ties, the subset that comes first in 'pseudo alphabetic' ordering should 

be chosen — the subsets will be distinct, so adding further people (who must have 

higher indices) to the jury will not affect the ordering. 

The overall time complexity is O(nm2u) where u = 2m, because the size of the table is 

O(nmu) and computing the value of a cell is O(1) plus O(m) to compare the 'pseudo 



 
 

alphabetic' ordering. It is possible to reduce the time of the comparison from O(m) to 

O(1) by observing that in the problem statement, the 'pseudo alphabetic' ordering rule 

is equivalent to the following rule: "prefer subsets containing person 1 over subsets 

that don't; if there are still ties, prefer subsets containing person 2 over subsets that 

don't; etc." The second rule can be implemented efficiently as follows: reverse the 

order in which the people are processed, so as to process the highest priority person 

(1) last, and at each point break ties by preferring to include person n' over excluding 

that person. When choosing the best overall jury, if both DP[n][m][b] and DP[n][m][−b] 

are true for the smallest possible b, then there are two juries with optimal |D(J) − P(J)| 

and the tie-breaking rules should be used to choose the best of the two. 

PROBLEM P: MOBILE (NZPC 2015) 

Consider an arm. Let wA be the total weight of the arm, let wL be the total weight of 

the left end, and let wR be the total weight of the right end. 

The three variables are linked by the following equations: 

wA = wL + wR wL*dL = 

wR*dR (the balance 

equation) 

If any one of wA, wL, or wR is known, then the other two can be computed using these 

equations. 

Specifically: 

- If wL is known, then wR = wL*dL / dR (from the balance equation) and wA = wL 

+ wR . 

Similarly if wR is known. 

- If wA is known, then solving the equations gives wL = wA * dR / (dL+dR) and 

wR = wA * dL / (dL+dR) . 

So starting from one known weight, it is possible to compute the weights of all the 

other arms and weights using a flood-fill algorithm. 

This leads to an approach for solving the problem: 

Assume weight m has weight 1, and compute all the other weights using fractional 

arithmetic. This gives their weight relative to weight m. 

Suppose the actual weight of weight m is wM. 

The relative weights will need to be multiplied by wM to get their actual weight. 

For the results to be integers, wM must be a multiple of the denominators of all the 

relative weights (as simplified fractions). 

So wM must be a multiple of the lowest common multiple (LCM) of the denominators 

(Euclid's Elements, Book VII, Proposition 35). 

Hence the minimum value of wM is w rounded up to the nearest multiple of the LCM. 

https://proofwiki.org/wiki/LCM_Divides_Common_Multiple


 
 

Multiplying wM by the relative weight of the root arm gives the minimum total weight 

of the mobile. 

There is another approach which does not require fractional arithmetic. 

Each arm has a minimum possible weight such that all the weights suspended from it 

have integer weights. 

The weight of each arm must be a multiple of its minimum weight (Euclid's Elements, 

Book VII, Proposition 20). 

The minimum weight of an arm can be computed from the minimum weights of its two 

ends: 

Let the minimum weights of two ends of an arm be mL and mR. 

Suppose the actual weights of the two ends are wL (a multiple of mL) and wR (a multiple 

of mR). Let T = wL*dL = wR*dR . T must be a multiple of mL*dL and of mR*dR, so the 

minimum value of T is LCM(mL*dL, mR*dR). 

Call this value mT. The corresponding value of wL is mT/dL, and the corresponding 

value of wR is mT/dL. 

Hence the minimum weight of the arm is mT/dL + mT/dR . 

The minimum weight of the entire mobile such that all the weights are integers can be 

computed this way. 

The individual weights in this minimum-weight mobile can then be computed. Let wM 

be the weight of weight m. 

If wM ≥ w, then we are done. If wM < w, then all the weights should be multiplied by 

ceil(w / wM). 

 

Statistics 

 M N O P 

Solved 10 3 0 0 

Attempts 28 36 19 5 

 

https://mathcs.clarku.edu/~djoyce/java/elements/bookVII/propVII20.html

